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We consider basic types of two-dimensionals2Dd vortex solitons in a three-wave model combining quadratic
xs2d and self-defocusing cubicx−

s3d nonlinearities. The system involves two fundamental-frequencysFFd waves
with orthogonal polarizations and a single second-harmonicsSHd one. The model makes it possible to intro-
duce a 2D soliton, withhidden vorticitysHVd. Its vorticities in the two FF components areS1,2= ±1, whereas
the SH carries no vorticity,S3=0. We also consider an ordinary compound vortex, with 2S1=2S2=S3=2.
Without thex−

s3d terms, the HV soliton and the ordinary vortex are moderately unstable. Within the propagation
distancez.15 diffraction lengths,Zdiffr , the former one turns itself into a usual zero-vorticitysZVd soliton,
while the latter splits into three ZV solitonssthe splinters form a necklace pattern, with its own intrinsic
dynamicsd. To gain analytical insight into the azimuthal instability of the HV solitons, we also consider its
one-dimensional counterpart, viz., the modulational instabilitysMI d of a one-dimensional CWscontinuous-
waved state with “hidden momentum,” i.e.,opposite wave numbersin its two components, concluding that such
wave numbers may partly suppress the MI. As concerns analytical results, we also find exact solutions for
spreading localized vortices in the 2D linear model; in terms of quantum mechanics, these are coherent states
with angular momentumswe need these solutions to accurately define the diffraction length of the true
solitonsd. The addition of thex−

s3d interaction strongly stabilizes both the HV solitons and the ordinary vortices,
helping them to persist overz up to 50Zdiffr . In terms of the possible experiment, they are completely stable
objects. After very long propagation, the HV soliton splits into two ZV solitons, while the vortex withS3

=2S1,2=2 splits into a set of three or four ZV solitons.

DOI: 10.1103/PhysRevE.71.036608 PACS numberssd: 42.65.Tg

I. INTRODUCTION

Two-dimensionals2Dd spatial solitons with embedded
vorticity S constitute a class of topologically charged local-
ized nonlinear modes in optical media, which have recently
drawn a lot of interest, starting with the work that predicted
sby means of direct simulationsd stable vortices withS=1 in
a model based on the 2D nonlinear Schrödinger equation
with competing self-focusing cubic and self-defocusing
quintic nonlinearitiesf1g. Further analysis had supported this
result by showing that the spectrum of eigenmodes of small
perturbations around the vortex solitons does not contain un-
stable eigenvalues, provided that the soliton’s integral power
squadratic normd exceeds a certain minimum valuesin other
words, the external size of the corresponding annulus-shaped
soliton must be large enoughd, see details in Ref.f2g. It had
also been found that higher-order vortex solitons in the 2D
cubic-quintic sCQd model have their stability regions forS
=2 f2g sa short review of the topic was given in Ref.f3gd, and
also for S.2 sat least, up toS=5d, although forSù3 the
stability region is very narrow, corresponding to the vortex
solitons with an extremely large sizef4,5g.

A problem hampering experimental observation of the
stable vortex solitons is that optical media, which may be
approximated by the CQ nonlinear SchrödingersNLSd equa-
tion sthese are chalcogenide glassesf6g and some organic
substancesf7gd, feature quite strong nonlinear lossstwo-

photon absorptiond alongside the CQ nonlinearityf8g, which
can easily kill any solitonf9g. For this reason, and also be-
cause it was necessary to understand how general the con-
clusion about the existence of stable spatial vortex solitons
was, this issue was further investigated in another model,
which is also based on competing nonlinearities, viz., qua-
dratic xs2d salias second-harmonic-generatingd and self-
defocusingcubic x−

s3d terms swithout the latter one, all the
vortex solitons inxs2d media are subject to strong instability
against azimuthal perturbations, which splits them into a set
of separating zero-vorticitysZVd stable solitons, as was
shown both theoreticallyf10g and experimentallyf11gd. For
the first time,stablevortices withS=1 andS=2 swhich were
called vortex rings, because of their annular shaped in the
combinedxs2d :x−

s3d model were found in Ref.f12g. The sta-
bility was demonstrated through the calculation of stability
eigenvalues and verified by direct simulationsssee a brief
review in Ref.f13gd. Recently, this analysis was extended to
higher-order solitons, with a conclusion that, as well as in the
CQ model, the vortex rings withS.2 have their narrow
stability regions, corresponding to the rings with a very large
outer radiusf14g.

The xs2d models involve, at least, two waves—the
fundamental-frequencysFFd and second-harmonicsSHd
ones. The soliton’s vorticityS is carried by the FF wave,
whereas the SH vorticity is 2S. In the real experiment, the
FF-SH phase matching, which is a necessary condition for
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the creation of solitons, can be more easily achieved using
the natural birefringence of thexs2d crystal through the so-
called type-II quadratic interaction. The latter involves two
FF waves with orthogonal polarizations and a single SH
wave f15,16g. In this case, the vorticitiesS1,2 and S3 of the
two FF and one SH components are related in an obvious
way, S1+S2=S3. In particular, the configuration withS1=S2
=1 andS3=2 is a straightforward generalization of the fun-
damental vortex ring, with the vorticities 1 and 2 in the FF
and SH waves, in the type-Ixs2d model, which involves the
single FF componentf12g. However, a different species of
the 2D soliton is the one withS1=−S2=1 andS3=0, which is
possible solely in the type-II system. For obvious reasons,
this may be called ahidden-vorticitysHVd soliton.

It is relevant to mention that compound vortex solitons
were recently studied in multicomponent models, such as a
bimodal CQ systemf17g. Another example is provided by a
two-component system with saturable nonlinearity, with the
vorticities S1=1, S2=0 f18g. The type-II system with the
mixed xs2d :x−

s3d nonlinearity is a very natural model to intro-
duce spatial 2D solitons of the HV type, which were not
considered in the above-mentioned models.

Although various types of solitons supported by the com-
peting xs2d and xs3d nonlinearities in the type-I model have
been studied in detailssee reviewsf16gd, their study in the
three-wave type-II system was only recently started in Ref.
f19g, which dealt with one-dimensionals1Dd solitons in this
system. It has been found that, in some cases, the 1D solitons
are drastically different, as concerns their stability, from their
counterparts in both the two-wavexs2d :xs3d model of type I
and in the well-known two-wave model with the Kerr non-
linearity and birefringence, but without thexs2d interaction
f20g. We also note that, while it may be difficult to find
natural optical materials featuring the combinedxs2d :x−

s3d

nonlinearity, it can be engineered, on the basis of materials
with the usualxs2d nonlinearity, in various ways by means of
the quasi-phase-matching techniquef21,22g ssee a detailed
discussion in Ref.f19gd.

Following Refs.f12,19g, we adopt the following model
governing the spatial evolution of two FF waves with the
orthogonal polarizations and the single SH wave, coupled to
them by the quadratic and cubic nonlinearities. In a normal-
ized form, the equations for the corresponding local ampli-
tudesA1,2 andA3 are
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wherez is the propagation distance, the Laplaciansdiffrac-

tion operatord acts on the transverse coordinatessx,yd, l

.0 is the relative strength of thex−
s3d nonlinearityswhile the

strength of thexs2d interaction is normalized to be 1d, and
real parametersb and a account, respectively, for the bire-
fringence between the two FF polarizations and the residual
phase-velocity mismatch between the FF and SH waves.

Equationss1d–s3d do not include thexs3d-induced four-
wave mixing sFWMd terms, such as −sl /12dA2

2A1
* and

−sl /6duA2u2A3, which were included in the full model put
forward in Ref.f19g. Indeed, the phase-matching conditions
for the FWM differ from those for the type-II coupling.
Therefore, in the real experiments running close to the phase-
matching point for the type-II interaction, the FWM is not
expected to be phase matched. This argument allows us to
neglect the corresponding terms in Eqs.s1d–s3d.

As well as a majority of works in this field, the model
disregards a possible dc field produced by rectification in the
xs2d medium. Although the rectification may be a significant
factor under special circumstancesf23,24g, it is unlikely that
the special polarization conditions, which are required for the
generation of the dc fieldf24g, would be met simultaneously
with those that are necessary for the efficient type-IIxs2d

interaction.
In this paper, we focus on the most fundamental type of

HV solitons, i.e., the one withS1,2= ±1 andS3=0, as said
above. Note that the total angular momentum of the HV
solitons is zero only in the case ofb=1 in Eqs.s1d and s2d,
when the birefringence between the FF waves is absent; oth-
erwise, the asymmetry between theA1 andA2 fields will give
rise to a nonzero sum of their intrinsic angular momenta. We
will also study, in parallel, ordinary vortex solitons in the
same system, withS1,2=1 andS3=2.

First, we will briefly consider the properxs2d version of
the model, settingl=0 in Eqs. s1d–s3d. As might be ex-
pected, all the vortex solitons are unstable in this case, al-
though the instability of both the HV and ordinary vortex
solitons is moderate, requiring.15 diffraction lengths for its
complete development. The HV soliton eventually trans-
forms into an ordinary stable ZVsground-stated soliton,
while the ordinary vortex splits into a necklace pattern com-
posed of three ZV solitons.

As is known, it is difficult to explain peculiarities of the
azimuthal instability of vortex solitons in an analytical form
ssometimes, it may be understood as an instability of the
central hole in a large-area soliton against spontaneous off-
center shift caused by its attraction to the outer rim of the
soliton f2g, but this instability mode is seldom a dominant
oned. To get, at least, some insight into the instability of the
HV solitons, we will consider its 1D counterpart in the form
of the modulational instabilitysMI d of a CW scontinuous-
waved solution withopposite wave numbersof two FF com-
ponents. Even this case turns out to be quite cumbersome in
the general case; therefore, our actual analysis focuses on the
cascading limitscorresponding to a large mismatch between
the FF and SH fieldsf16gd, wherein the type-IIxs2d model
goes over into a system of two cross-phase modulation
sXPMd-coupled NLS equations. We demonstrate that the hid-
den momentum may attenuate the MI, which suggests an
explanation for the relative stability of the HV solitons.
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An issue of principle interest is a possibility to stabilize
the vortices by means of thex−

s3d nonlinearity. Our main re-
sult is that, while complete stabilization of the HV soliton is
not plausiblesalthough we were not able to explore the entire
parameter space of the modeld, the x−

s3d terms significantly
attenuate the azimuthal instability, allowing the soliton to
support itself over the propagation distancez equivalent to
tens of diffraction lengths. This result puts the HV solitons in
the xs2d :x−

s3d model in the general class ofnearly stablesoli-
tons, which, strictly speaking, do not exist or are unstable,
but may be observed in the experiment, as their instability
develops at unrealistically large values ofz, which would
definitely exceed the size of available samples. Examples of
such objects are temporalf25g and spatiotemporalf26g soli-
tons in xs2d media with normal group-velocity dispersion at
the SH, which, generally, ought not to exist, but are, in ef-
fect, relevant physical objectssalthough not yet created in
the experimentd because their decay would be extremely
slow.

In order to bring the consideration closer to the experi-
mental situation, we do not search for stationary solitons
whose stability would be then tested by simulations. Instead,
we start with an initial configuration that is expected to be
sufficiently close to a stationary soliton. This corresponds to
the way the experiment is run, starting with an initial beam
that is believed to be sufficiently close to the soliton’s profile.
Because the initial configuration is not an exact solution, the
spatial solitons observed in the direct simulationssboth HV
solitons and ordinary vorticesd, remainingstableagainst azi-
muthal perturbations, perform several cycles of slow oscilla-
tions in the radial directionsif the azimuthal perturbations
are not seeded, then the number of the radial oscillations is
indefinitely large, without invoking any instabilityd.

To conclude the description of the topic, we note that 2D
spatial solitons can be naturally generalized in the form of
three-dimensional s3Dd spatiotemporal solitons sSTSd,
which brings the temporal variable into the model. In the
xs2d :x−

s3d model of type I, stable spinning STS, with the vor-
ticities S1=1 andS2=2 in their FF and SH components, were
predicted in Ref.f27g. Search for three-dimensional STS
with hidden vorticity in thexs2d :x−

s3d model of type II is a
challenging issue, which is, however, very difficult in its
technical aspects and will not be considered in the present
paper.

The paper is organized as follows. In Sec. II we give an
accurate definition of the above-mentioned diffraction length
Zdiffr , using an exact vorticity-carrying solution to the linear
2D Schrödinger equation, which is based on a radial Gauss-
ian. The accurate definition ofZdiffr is necessary, as the
stable-propagation distance in the nonlinear models should
be expressed in units ofZdiffr . Then, in Sec. III we present
results concerning the azimuthal instability of the vortices in
thexs2d model, withl=0 in Eqs.s1d–s3d. This is followed by
brief consideration of the related issue of the modulational
instability of the 1D CW states with the “hidden momentum”
in Sec. IV. The main findings, demonstrating the instability
inhibition by thex−

s3d terms, are reported in Sec. V. The paper
is concluded by Sec. VI.

II. DIFFRACTION LENGTH FOR THE LINEAR VORTEX

In the linear approximation, Eqs.s1d–s3d decouple. There-
fore, to defineZdiffr , which is determined by the linear parts
of the equations, we take, e.g., the linear version of Eq.s1d.
A family of exact solutions can be found for it,

A1sr,u,zd = As0d rS1

s1 + iz/r0
2ds1+S1d expS− ibz+ iS1u

−
1 − iz/r0

2

1 + z2/r0
4

r2

2r0
2D , s4d

where r and u are the polar coordinates in the transverse
plane, the integerS1ù0 is the vorticity in the fieldA1, while
As0d and r0 are arbitrary constants. In terms of quantum me-
chanics, this solution can be understood as a 2Dcoherent
statewith the angular momentumS1 in the two-dimensional
free space.

The intensity distribution corresponding to the solution
s4d is

uA1sr,zdu2 = uAs0du2
r2S1

s1 + z2/r0
4ds1+S1d expS−

r2

r0
2 + z2/r0

2D . s5d

It attains a maximum value atr =r, with

r = ÎS1sr0
2 + z2/r0

2d, s6d

which may be naturally identified as the radial size of the
expanding vortex ring. Then,r0;ÎS1r0 is the initial size of
the ring at the input pointz=0, andZdiffr may be defined as
the propagation distance after which the ring’s size becomes
twice as large as it was at the input,rsz=Zdiffrd=2r0. From
this definition and Eq.s6d, we find

Zdiffr = sÎ3/S1dr0
2. s7d

This expression will be used to gauge various propagation
distances that emerge in simulations of the full nonlinear
system.

An alternative definition of the vortex-ring’s radius may
be based, instead of the intensity profiles5d, on the radial
distribution of the intensity integrated over the angular vari-
able u, which implies the multiplication of Eq.s5d by 2pr.
The accordingly modified radius of the vortex ring and dif-
fraction length amount to the same expressionss6d and s7d
with S1 replaced byS1+1/2. Note that the expressions7d
does not apply to the ZV pulse, withS1=0. However, the
alternative definition is also meaningful in this case, yielding
Zdiffr

sS=0d=2Î3r0
2;Î3r0

2.

III. AZIMUTHAL INSTABILITY OF VORTICES
IN THE x„2… MODEL

Numerical solution of the underlying equationss1d–s3d
was performed by means of the Fourier decomposition in the
angular variableu,

Ajsr,u,zd = o
p=−`

+`

Aj
spdsr,zdeipu, j = 1,2,3. s8d

The substitution of Eq.s8d into Eqs.s1d–s3d leads to a chain
of coupled equations with the independent variablesr andz.
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This chain was truncated by dropping the amplitudesAj
spd

with upu.6 si.e., 13 azimuthal modes were taken into ac-
countd. The evolution equations for the amplitudesAj

spd were
solved by means of a finite-differences scheme forr and z,
with the usual three-point approximation for]2Aj

spd /]r2, and
the three-point approximation for]Aj

spd /]z, which provided
for numerical stability of the scheme. We used a constant
stepdz.5310−6 for z, and the grid contained 100 points in
the r direction, separated by a stepdr .0.08. Actually, 35 of
these points were involved in implementation of reflection-
less absorbing boundary conditions atr →`, which was done
by adding linear-absorption terms to the equations over the
set of 35 sites.

Furthermore, care was also taken to properly regularize
the numerical scheme atr →0. This allowed us to avoid
instability due to the factorr−1 in the radial part of the La-
placian.

Note that Eqs.s1d–s3d admit the substitutions8d with only
three nonzero amplitudesAj

spjd, provided that their azimuthal
indices are locked so thatp1+p2=p3. In this case, the result-
ing equations for the three amplitudes easily generate a large
number of solitary pulsons, i.e., solutions that are localized
in r and feature periodic shape oscillations. These solutions
are stable within the framework of the three-amplitude re-
duction. However, in the case ofl=0, which corresponds to
the purely quadratic nonlinearity, small azimuthal perturba-
tions, which include angular harmonics different from the
initial triplet, easily trigger an instability. The azimuthal in-
stability of the pulsons was also verified in the linear ap-
proximation by numerically computing eigenvalues that de-
termine the instability growth rate for small perturbations.

As said above, we are, first of all, interested in the HV
soliton, which is based on the expressions8d with the non-
zero amplitudesA1

s+1d, A2
s−1d, andA3

s0d. In this case, the fastest-
growing azimuthal instability involves the angular harmonics
of the perturbation withp1,2=0 in the FF fields, andp3
= ±1 in the SH field. After the onset of the instability, higher-
order angular harmonics are also generated.

The development of the azimuthal instability of the HV
soliton eventually transforms it into an ordinary ZV soliton,

which contains the single amplitude withp=0 in each field
component. It is well known that the ZV soliton may easily
be stable inxs2d models f16g. The actual mode of the
instability-induced transformation of the HV soliton into the
ZV soliton essentially depends on the sign of the mismatch
parametera fsee Eq.s3dg. In the case ofa.0, Fig. 1 dem-
onstrates that the soliton keeps its annular structure for a
while sthe SH component, which had no inner “hole” ini-
tially, also acquires a ring-shaped formd. The ring gradually
develops inhomogeneity in the azimuthal direction and,
eventually, collects all the power into a single spot shifted
relative to the center of the initial ring. Thus, the center of
the eventually established ZV soliton is displaced relative to
the center of the original HV soliton. In the opposite case,
a,0, the annular structure disappears faster, as is shown in
Fig. 2.

Note that the initial data atz=0 in Figs. 1 and 2 have been
chosen close to the final stage of the instability development,
in order to focus on the crucial phase of the destruction of the
vortices. This explains the strongly perturbed initial profile
of the vortex ring in these figures. Longer simulations dem-
onstrate that, if the perturbations atz=0 are much weaker
sclose to the precision of the numerical schemed, the destruc-
tion of the ring occurs at aboutz=2.8. Note that the ring’s
radius, identified as the position of the intensity maximum, is
r0.0.32; hence, Eq.s7d yieldsZdiffr .0.18si.e., the destruc-
tion of the ring initiated by small perturbations occurs within
15 or 16 diffraction lengthsd, and the formation of the even-
tual ZV spot takes an additional one or twoZdiffr . In that
case, the ring, being a pulsonssee aboved, performs about
one radial pulsation before it gets destroyed.

In the same model withl=0, the ordinary vortex soliton,
with the vorticitiesS1,2=1 andS3=3, is subject to the usual
azimuthal instability, which splits it into a set of three stable
ground-statesZVd solitons. This outcome is illustrated by
Fig. 3. In this case, too, the splitting proceeds very quickly
because of the strong perturbation included in the initial con-
figuration. If, instead, the same simulation is run with a small
initial perturbationswith the relative amplitude,10−8d, then
the corresponding pulson performs about two oscillations in
the radial direction, within a distancez.1, before the insta-

FIG. 1. sColor onlined The
contour plots show a typical ex-
ample of the instability develop-
ment for the soliton with the hid-
den vorticity, i.e., with the initial
vorticitiessS1,2= ±1,S3=0d, in the
case of the positive mismatch,a
=4. In this example, the birefrin-
gence between the two compo-
nents of the fundamental-
frequency wave is absent, i.e.,b
=1.
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bility displayed in Fig. 3 sets in. The radius of this vortex
ring is r0.0.19, which yieldsZdiffr .0.06, thus the instabil-
ity development needs the propagation length.16 Zdiffr .

After the splitting of the vortex has occurred, the three
splinters do not immediately separate; instead, they recom-
bine into a transient pattern of the necklace type. Patterns of
this type have recently been found in models with various
nonlinearitiesf28g sin particular, they are especially robust in
the case of the samexs2d: x−

s3d nonlinearity f29gd. In the
course of still longer simulations, the necklace observed in
Fig. 3 will again split into three segments, but of different
sizes, in comparison with the primary onessnot shown hered.
The recombination and secondary splitting lead to lowering
of the pattern’s symmetry, from the threefold one in Fig. 3 to
a twofold symmetry at a later stage of the evolution.

The comparison to the instability-induced splitting of the
vortex soliton suggests a qualitative understanding of the fact
that the HV soliton transforms itself into a usual ZV soliton.
Indeed, although each FF component may have a trend to
split into three segments, the two sets of the splinterssneck-
lacesd would have to rotate inopposite directions, which is
difficult for them to do. In fact, the opposite angular mo-
menta originally lent to the two FF components can be trans-
ferred, because of the direct parametric interaction in the

type-II xs2d model, into the SH mode, where they mutually
cancel.

IV. ANALYSIS OF MODULATIONAL INSTABILITY
IN 1D CW STATES WITH “HIDDEN MOMENTUM”

As was mentioned above, the simplest 1D analog of the
two-dimensional HV solitons are multicomponent CW solu-
tions with opposite wave numbers, ±q, in two components.
However, the analytical investigation of the MIsmodula-
tional instabilityd of such states in the fullxs2d model of type
II turns out to be extremely cumbersome. Much clearer re-
sults can be obtained in a simplified model, which corre-
sponds to the cascading limitsthe one with large mismatchd,
i.e., two coupled NLS equations,

Si
]

]z
+

1

2

]2

]x2DA1 + suA1u2 + suA2u2dA1 = 0, s9d

Si
]

]z
+

1

2

]2

]x2DA2 + suA2u2 + suA1u2dA2 = 0, s10d

cf. Eqs. s1d and s2d. Here the positive coefficients is the
XPM/self-phase modulation (SPM)ratio, which we keep as a

FIG. 2. sColor onlined The same as in Fig. 1, but for a negative mismatch,a=−3.
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free parametersusual physically relevant values ares=2/3
and 2d. The solution with “hidden momentum” is

A1,2sz,xd = A0 expsikz± iqxd, A0
2 = sk + 1

2q2d/s1 + sd

s11d

sthe propagation constantk is taken equal in the two compo-
nents to provide for the symmetric solutiond. In this connec-
tion, it is relevant to mention that two-component solitons of
the HV type, with spins ±S in the twoXPM-coupled modes,
can also be constructed in the 2D version of the systems9d
ands10d augmented by self-defocusing quintic terms to pro-
vide for the global stability of solitons in the 2D casef32g.

For the study of the MI of the solutionss11d, we proceed
as usual, representing the fields in terms of the amplitude and
phase,A1,2;a1,2sz,xdexpfif1,2sz,xdg, and linearizing equa-
tions for the perturbations ofa1,2 andf1,2. The eigenmodes
of the perturbations are subsequently sought for in the form
,expsgz+ ipxd with an arbitrary real wave numberp. The

resulting dispersion relation for the instability growth rate
g is

g2 = g±
2sp2d ; p2FA0

2 − q2 −
p2

4
± ÎA0

2ss2A0
2 − 4q2d + q2p2G ,

s12d

which shows the effect of the hidden momentumq on the MI
of the CW solution.

First, the expansion of Eq.s12d for p2→0 demonstrates
that the addition ofq2 leads to adecreaseof the largest
instability growth rate for long-wave perturbations,

g+
2 < p2fA0

2 − q2 + ÎA0
2ss2A0

2 − 4q2dg. s13d

It follows from this expression that the instability at smallp2

is completely eliminated ifq2 belongs to the interval

maxhs − 1,1jA0
2 , q2 , ss/2d2A0

2, s14d

which is actually possible only fors.2. Note also that, in
the case ofq2. ssA0/2d2, the expressionss12d ands13d yield

FIG. 3. sColor onlined A typi-
cal example of the splitting of the
ordinary vortex, withS1,2=1 and
S3=2, in the model without the
cubic nonlinearity, into a set of
three fragments, that temporarily
recombine into a necklace. In this
case,a=−3 andb=1. The evolu-
tion of only one FF component is
shown here, the other fields show-
ing a similar behavior.
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complex eigenvalues, corresponding to an oscillatory MI,
which is not possible whenq=0.

Another consequence of Eq.s12d is that the value that
limits the instability region is

pcutoff
2 = 4fq2 + s1 + sdA0

2g s15d

fso that g2sp2d,0 for p2.pcutoff
2 g. Moreover, if q2

. ssA0/2d2, there aretwo distinct instability intervals: the
one

0 , p2 , A0
2s4q2 − s2A0

2d/q2, s16d

in which the instability growth rate is complex, and

4fq2 − ss − 1dA0
2g , p2 , 4fq2 + s1 + sdA0

2g, s17d

wherein it is real. In the region

A0
2s4q2 − s2A0

2d/q2 ø p2 ø 4fq2 − ss − 1dA0
2g, s18d

between the intervalss16d and s17d, there is no instability.
Finally, the addition of the hidden momentum can also

decrease the maximum valuegmax of the instability growth
rate. For instance, in the case ofs=2 andq2=A0

2, we find
gmax=sÎ3/2d3A0<0.86633A0 sit is attained atp=3A0d,
while in the same case, but withq=0, a somewhat larger
value,gmax=3A0, is attained atp=Î6A0.

V. STABILIZATION OF VORTICES IN THE FULL MODEL

Many runs of simulations of the full systems1d–s3d with
l.0 have demonstrated that the HV solitons, as well as the
ordinary compound vortices, cannot be completely stabilized
under what may be regarded as realistic conditionssin par-
ticular, we did not test the stability of the vortices of an
extremely large size, where complete stabilization might be
expected, as suggested by the results obtained in allied mod-
els f2–4,12–14gd. However, it is quite possible to find cases
when thex−

s3d nonlinearity makes both the HV solitons and
ordinary vortices practically stable, i.e., the solitons may

safely exist over the propagation distance amounting to sev-
eral dozen of the diffraction lengths, which will render them
completely stable objects in any feasible experimentscf., for
instance, experiments in which stable quasi-2D spatiotempo-
ral solitonsf30g and optical vortices of the dark-soliton type
f31g were found inxs2d media—in those cases, the experi-
mentally available propagation distance did not exceed a few
diffraction lengthsd.

As said above, we did not try to start the stability tests by
finding numerically exact stationary soliton solutions; in-
stead, the initial configurations were taken in a “reasonable”
form, with the aim to keep the simulations closer to the ex-
perimental situation in this respect too. As a result, we have
observed that, if the initial configuration was limited to a
superpositions8d with exactly three components, which cor-
respond either to the HV soliton, withS1,2= ±1 andS3=0, or
the vortex withS1,2=1 andS3=2, the “reasonable” input eas-
ily self-traps into a pulson which remains stable indefinitely
long, if it is not deliberately perturbed.

A. Hidden-vorticity soliton „S1,2= ±1,S3=0…

The explicit addition of perturbations in the form of a
random mixture of extra angular harmonics gives rise to a
slowly developing instability of the solitons. As well as in
the previous section, we will first consider the HV soliton.
Before being destroyed by the azimuthal instability triggered
by added perturbations, it keeps to pulsate at a fixed fre-
quency, as shown in Fig. 4. A cardinal difference from the
model without thex−

s3d terms ssee aboved is that now the
soliton is robust enough to perform six or seven slow pulsa-
tions, whereas in the previous model, it would be destroyed
before completing even two cycles of the intrinsic vibrations.

Recall that, in the model withl=0, the azimuthal insta-
bility transformed the HV soliton into a single ZV soliton
ssee Fig. 1d. In the present case, the outcome of the develop-
ment of the slow instability is different; as shown in Fig. 5,
the HV soliton eventually splits into a set of two ZV ones. A

FIG. 4. sColor onlined The
contour plots display the evolution
of the leading azimuthal compo-
nents ÎrAj

sSjdsr ,zd s j =1,2,3d of
the three amplitudesAj, which
form the hidden-vorticity pulson,
with S1,2= ±1 and S3=0, in the
full xs2d :x−

s3d modelsthe multiplier
Îr is added to illustrate the distri-
bution of the integral intensities of
the fields, which arer uA1,2,3u2d.
The vanishing of these compo-
nents after.6 cyclessat z<13.5d
corresponds to the destruction of
the soliton by the azimuthal insta-
bility. In this case, the parameters
are b=1, a=5, and l=0.0045.
The white contours on the left il-
lustrate the diffraction of the input
in the absence of nonlinearity.
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noteworthy conclusion that follows from Fig. 4 is that the
HV soliton, in the form of the ring with the radius.0.5,
which corresponds toZdiffr .0.43 sabout twice the values
obtained in the case ofl=0, cf. Figs. 1 and 2d, survives over
a propagation distance of about 30Zdiffr , whereas without the
x−

s3d terms, the soliton was destroyed after passing the dis-
tancez&15 Zdiffr . Note that the radial pulsations of the HV
soliton sdisplayed in Fig. 4d have a very large period, which
decreases during the propagation from.7.5 to .4.5 Zdiffr .

Details concerning the instability-driven growth of the
amplitudes of different angular harmonics in the perturbation
around the SH componentsA3d of the HV soliton are col-
lected in Fig. 6. The first feature, obvious in the figure, is that
the dominant instability is accounted for by a conjugate pair
of the harmonics withp= ±2. With regard to the fact that the
SH component of the unperturbed HV soliton has zero vor-
ticity, this precisely complies with the observation that the
HV soliton is eventually split by the instability into two ZV
solitonssas seen in Fig. 5d. Note that, in other models, too,
the number of the splinters usually coincides with the azi-

muthal index of the most unstable perturbation
f2,3,12,14,17g. The perturbations withp= ±1 andp= ±3 are
also formally growing, but they remain insignificant, as their
amplitudes stay four orders of magnitude smaller than those
of the dominant mode withp= ±2. It appears that, at a late
stage of the instability development, when the linearization is
no longer valid, the perturbations withp= ±3 andp= ±1 are
nonlinearly suppressed by the dominant mode.

Higher-order perturbation harmonics may also play a sig-
nificant role. In particular, Fig. 6 shows that the modes with
p= ±4 are unstable in the linear approximationsas their
growth starts at an early staged, although their linear-growth
rate is obviously smaller than that of the main mode, with
p= ±2. However, on the contrary to the above-mentioned
perturbations withp= ±1 andp= ±3, whose growth is non-
linearly inhibited by the dominant mode, the growth of the
harmonics withp= ±4 is nonlinearlyenhanced, starting from
z<11. This observation can be understood, as thexs2d non-
linearity directly generatesp= ±4 harmonics from the main
p= ±2 ones.

FIG. 5. sColor onlined The
splitting of the hidden-vorticity
soliton into a set of two zero-
vorticity solitons caused by the
weak azimuthal instability in the
same case as in Fig. 4. The three
rows of the contour plots show the
evolution of intensities of the soli-
ton’s fieldsA1, A2, and A3 at the
critical stage of the splitting. Atz
,13, the initial soliton remains
completely stablesfeaturing long-
period persistent radial pulsa-
tionsd.

FIG. 6. sColor onlined The
growth of the amplitudesuA3

spdu of
the angular perturbations in the
second-harmonic fieldfdefined as
in Eq. s8dg with z is shown on the
logarithmic scale, for the same
case as in Figs. 4 and 5. The val-
ues of the azimuthal indexp are
indicated near the curves.
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Finally, the modes withp= ±5 and ±6 are linearly stable,
as they do not grow up toz<9, when they suddenly get a
boost. It is an obviously nonlinear effect; in particular, the
p= ±6 harmonics are directly generated by thexs3d terms
from the main perturbation mode withp= ±2.

B. Ordinary compound vortex „S1,2=1,S3=2…

Results obtained in related models, with the CQf2,3,4,17g
and type-Ixs2d :x−

s3d f12,14g nonlinearities, suggest that the
ordinary vortices, such as the one withS3=2S1,2=2, may be
completely stabilized, provided that the size of the vortex
soliton is very large. In this work, we did not aim to find
completely stable stationary vortices in this way, as the cor-
responding huge values of the power and diffraction length
would be physically unrealistic.

A simpler approach issas it was done above for the HV
solitonsd to look for a possibility for self-trapping of practi-
cally stable pulsons from a generic input. For instance,
choosingl=0.0054 andb=1, a=−3, we observed that the
vortex remained apparently stable over many diffraction
lengths, featuring persistent pulsations in the radial direction,
as shown in Fig. 7. In this case, the radius of the vortex ring
is r0.0.5, which yieldsZdiffr .0.43 and the quasistable
propagation is observed up toz=12.5<30 Zdiffr . An extrapo-
lation of the growth of the perturbations predicts that the
splitting of the ring should occur asz.22<50 Zdiffr .

In fact, the ordinary vortex appears to be even more stable
than the HV soliton. Accurate analysis of the numerical data
makes it possible to compute the growth ratess for the am-
plitudes of different angular harmonics in the perturbation,
assuming that thepth one grows as expssz+ ipud. The result
is presented in Fig. 8. As is seen, the most unstable pertur-

FIG. 8. sColor onlined The in-
stability growth rates for different
angular harmonics, ,expssz
+ ipud, in the three components,
A1,2 and A3, of the perturbation
around the quasistable vortex with
S1,2=1, S3=2. The parameters are
l=0.0054,b=1, anda=−3.

FIG. 7. sColor onlined The
contour plots display the evolution
of the leading azimuthal compo-
nents ÎrAj

sSjdsr ,zd s j =1,2,3d of
the three amplitudesAj, which
form the vortex pulson, withS1,2

=1 andS3=2, in the full xs2d :x−
s3d

model sthe multiplier Îr is added
to illustrate the distribution of the
integral intensities of the fields,
which are 2pr uA1,2,3u2d. The soli-
ton is expected to be destroyed by
the azimuthal instability in the
course of the further propagation,
at aboutz=22. In this case, the pa-
rameters areb=1, a=−3, andl
=0.0054. The white contours on
the left illustrate the diffraction of
the input in the absence of
nonlinearity.
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bation modes correspond topFF=s4,−2d andpSH=s5,−1d in
the FF and SH fields, respectively. Subtracting the vorticities
S1,2=1 andS3=2 of the unperturbed FF and SH components
from pFF and pSH, respectively, we conclude that relative
azimuthal indices of the intrinsic perturbation are ±3, sug-
gesting that the vortex will eventually split into three zero-
vorticity solitons, as it has been observed for other values of
the parametersssee Fig. 9d.

The vortex can also split into a set of four ZV solitons, as
shown in Fig. 10. Note that, as well as in Figs. 1–3, initial
configurations atz=0 in Figs. 9 and 10 have been chosen
close to the final stage of the instability development, i.e.,
they contain large perturbations. Starting with initial configu-
rations that contain small perturbations, we observed that the
instability always developed slower than in the model with-
out the cubic terms. In this case, the distance at which the
splitting occurs is found to be between 15 and 50 diffraction
lengths.

VI. CONCLUSION

In this work, we have considered basic types of 2D vortex
solitons in the three-wave model combining the self-
defocusing cubic interaction and quadratic interaction of type
II. The latter involves two fundamental-frequencysFFd
waves and a single second-harmonicsSHd wave. The system
can be implemented in a birefringentxs2d material on the
basis of the quasi-phase-matching technique. The three-wave
structure of the model makes it possible to construct a spe-
cific type of 2D solitons, namely, the ones withhidden vor-
ticity sHVd, which carry vorticities ±1 in the FF components,
and zero in the SH. In parallel, we have also studied the
usual compound vortex with the vorticitiesS3=2S1,2=2 in
the three fields.

In the absence of the self-defocusing cubic nonlinearity,
all the vortices are subject to the azimuthal instability within
the propagation distance&15 Zdiffr sto accurately define the

FIG. 9. sColor onlined The in-
stability of the ordinary vortex
sS1,2=1,S3=2d in the case ofl
=0.005 andb=1, a=−3.

FIG. 10. sColor onlined The
same as in Fig. 9, but withl
=0.0057. In this case, the vortex
splits into four fragments.
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diffraction lengthZdiffr , we have found an exact solution to
the 2D linear Schrödinger equation that describes a spread-
ing localized vortex, which has the meaning of the 2D co-
herent state with angular momentum in quantum mechanicsd.
This instability transforms the HV soliton into a usual stable
2D zero-vorticitysZVd pulsesalias, the ground-state solitond,
while the ordinary vortex splits into three ZV solitonssthey
form a transient necklace pattern, which features its own
intrinsic dynamicsd. To better understand this case, we have
also developed analytical consideration of its 1D counterpart,
viz., the modulational instability of a CW state with thehid-
den momentum, in the form of opposite wave numbers in two
coupled components.

In the full model, which includes the cubic terms, both the
HV solitons and ordinary compound vortices may be
strongly stabilized, persisting over the propagation distance
swhich can be as large as 30 or even 50 diffraction lengthsd.
Therefore, they are completely stable physical objects, in
terms of possible experiments. After very long propagation,

the HV soliton splits into two ZV solitons, while the vortex
with S3=2S1,2=2 splits into three or four ZV solitons.

The most essential prediction for the experiment, follow-
ing from the present results, is that observation of an effec-
tively stable 2D soliton with the hidden vorticity is quite
possible, in principle, even without the addition of the stabi-
lizing cubic nonlinearity. In the experiment, the radius of the
vortex-carrying beam and the FF wavelength are expected to
be, respectively,r ,20 mm andlFF,1 mm, with the respec-
tive diffraction length being, in physical units,Zdiffr
,s2p /ldÎ3r2.0.5 cm; hence, a sample admitting the
propagation length up toz,20 cm will be necessary.
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