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We consider basic types of two-dimensiof2D) vortex solitons in a three-wave model combining quadratic
x? and self-defocusing cubi;\z(_?’) nonlinearities. The system involves two fundamental-frequéREy waves
with orthogonal polarizations and a single second-harm@ii) one. The model makes it possible to intro-
duce a 2D soliton, withidden vorticity(HV). Its vorticities in the two FF components &8g,=+1, whereas
the SH carries no vorticitys;=0. We also consider an ordinary compound vortex, wifh=2S,=S;=2.
Without thex(_a) terms, the HV soliton and the ordinary vortex are moderately unstable. Within the propagation
distancez= 15 diffraction lengthsZgi, the former one turns itself into a usual zero-vortidigV) soliton,
while the latter splits into three ZV solitonghe splinters form a necklace pattern, with its own intrinsic
dynamic$. To gain analytical insight into the azimuthal instability of the HV solitons, we also consider its
one-dimensional counterpart, viz., the modulational instabiy) of a one-dimensional CWcontinuous-
wave state with “hidden momentum,” i.eopposite wave numbeis its two components, concluding that such
wave numbers may partly suppress the MI. As concerns analytical results, we also find exact solutions for
spreading localized vortices in the 2D linear model; in terms of quantum mechanics, these are coherent states
with angular momenturmiwe need these solutions to accurately define the diffraction length of the true
solitons. The addition of the((_s) interaction strongly stabilizes both the HV solitons and the ordinary vortices,
helping them to persist overup to 50Z¢, . In terms of the possible experiment, they are completely stable
objects. After very long propagation, the HV soliton splits into two ZV solitons, while the vortex S4ith
=28, ,=2 splits into a set of three or four ZV solitons.
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[. INTRODUCTION photon absorptionalongside the CQ nonlinearif], which
can easily kill any solitof9]. For this reason, and also be-

Two-dimensional(2D) spatial solitons with embedded cause it was necessary to understand how general the con-
vorticity S constitute a class of topologically charged local- clusion about the existence of stable spatial vortex solitons
ized nonlinear modes in optical media, which have recentlywas, this issue was further investigated in another model,
drawn a lot of interest, starting with the work that predictedwhich is also based on competing nonlinearities, viz., qua-
(by means of direct simulationstable vortices witt6=1in  dratic x'? (alias second-harmonic-generatingnd self-

a model based on the 2D nonlinear Schrédinger equatiodefocusingcubic X(_3) terms (without the latter one, all the
with competing self-focusing cubic and self-defocusingvortex solitons iny® media are subject to strong instability
quintic nonlinearitieg1]. Further analysis had supported this against azimuthal perturbations, which splits them into a set
result by showing that the spectrum of eigenmodes of smalbf separating zero-vorticitZV) stable solitons, as was
perturbations around the vortex solitons does not contain urshown both theoreticallj10] and experimentally11]). For
stable eigenvalues, provided that the soliton’s integral powethe first time stablevortices withS=1 andS=2 (which were
(quadratic normexceeds a certain minimum val(ie other  called vortex rings, because of their annular shapethe
words, the external size of the corresponding annulus—shapemmbinedx(z):X(_s) model were found in Ref12]. The sta-
soliton must be large enougtsee details in Ref2]. It had  bility was demonstrated through the calculation of stability
also been found that higher-order vortex solitons in the 2Deigenvalues and verified by direct simulatiofsee a brief
cubic-quintic (CQ) model have their stability regions f&  review in Ref.[13]). Recently, this analysis was extended to
=2[2] (a short review of the topic was given in RE8]), and  higher-order solitons, with a conclusion that, as well as in the
also for S>2 (at least, up toS=5), although forS=3 the = CQ model, the vortex rings witls>2 have their narrow
stability region is very narrow, corresponding to the vortexstability regions, corresponding to the rings with a very large
solitons with an extremely large siz4,5]. outer radiug 14].

A problem hampering experimental observation of the The x® models involve, at least, two waves—the
stable vortex solitons is that optical media, which may befundamental-frequency(FF) and second-harmoniqSH)
approximated by the CQ nonlinear SchrédingetS) equa-  ones. The soliton’s vorticityS is carried by the FF wave,
tion (these are chalcogenide glas$é$ and some organic whereas the SH vorticity is2 In the real experiment, the
substanceg7]), feature quite strong nonlinear logsvo-  FF-SH phase matching, which is a necessary condition for
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the creation of solitons, can be more easily achieved usingon operatoy acts on the transverse coordinaiesy), \

the natural birefringence of thg® crystal through the so- >0 is the relative strength of the® nonlinearity(while the
Ca”ed type-ll quadl’atIC interaction. The Iatter |nVO|VeS two Strength Of theX(z) interaction is norma”zed to be),land

FF waves with orthogonal polarizations and a single SHeg| parameterg and a account, respectively, for the bire-
wave[15,16. In this case, the vorticitieS, , and $; of the  gringence between the two FF polarizations and the residual

two FF and one SH components are related in an obviouspase.velocity mismatch between the FF and SH waves.
way, $;+$=S;. In particular, the configuration witB, =S, Equations(1)—=(3) do not include they®-induced four-

=1 andS;=2 is a straightforward generalization of the fun- o 27*
; . . . wave mixing (FWM) terms, such as (x/12A5A, and
damental vortex ring, with the vorticities 1 and 2 in the FF—()\/6)|A2|2A3, which were included in the full model put

and SH waves, in the typex® model, which involves the : . >
: . . forward in Ref.[19]. Indeed, the phase-matching conditions
single FF componeritl2]. However, a different species of for the FWM differ from those for the type-Il coupling.

the 2D soliton is the one witB;=-S,=1 andS;=0, which is . . :
possible solely in the type-Il system. For obvious reasonsTherefore’ in the real experiments running close to the phase-

this may be called Aidden-vorticity(HV) soliton. fmatching point for the type-II intera_ction, the FWM is not
It is relevant to mention that compound vortex soIitonseXpede to be phase matched. This argument allows us to

were recently studied in multicomponent models, such as Qe%lect tr|1|e correspgncjmg ]Eermskln_qur?:—(?c_). Id. th del

bimodal CQ systerp17]. Another example is provided by a disreS Zlvrfjs ZS gsg;sljg rclitc):/ f?eI(;N orro;ulcr:]ezi Itf :gctifitcaetigploinethe

two-component system with saturable nonlinearity, with the" ;) 9 di %Ith h th gf. i y b ianificant

vorticities S;=1, S,=0 [18]. The type-Il system with the medium. ough the rectiication may be a significan

mixed x2: ¥ nonlinearity is a very natural model to intro- factor un_der spe_mal_cwcums’_ta_mc[%,zz_l], Itis un||ke_|y that

duce spafiaf 2D solitons of the HV type, which were notthe speqal polar|zat|0.n conditions, which are required for the
’ generation of the dc fielf24], would be met simultaneously

considered in the above-mentioned models. : >
Although various types of solitons supported by the com-ymh those that are necessary for the efficient typa‘R

peting x'? and x'® nonlinearities in the type-I model have interaction.

been studied in detailsee reviewd16]), their study in the In this paper, we focus on the most fundamental type of
three-wave type-Il system was onl récentl star);ed in RefHV solitons, 1.e., the one witth, ,=+1 and$;=0, as said
[19], which d{aglt Wit%/ one-dimensignélD) sglitons in this above. Note that the total angular momentum of the HV
system. It has been found that, in some cases, the 1D solito solitons is zero only in the case B=1 in Egs.(1) and(2),

are drastically different, as concerns their stability, from their en the birefringence between the FF waves is absent; oth-
counterparts in both the two-wayé?: v model of type | erwise, the asymmetry between thgandA, fields will give

. . rise to a nonzero sum of their intrinsic angular momenta. We
and in the well-known two-wave model with the Kerr non- 9

linearity and birefringence, but without the? interaction will also study, in parallel, ordinary vortex solitons in the

o e . same system, witly, ,=1 and$;=2.
[20]. We also note that, while it may be difficult to find First, we will briefly consider the proper® version of

: ; : oD 3

hatural optical materials featuring the comb[nQG ‘X~ the model, setting\=0 in Egs. (1)~3). As might be ex-
nqnlmeanty, It %’m be_ engmegred, on the basis of mate“alﬁected, all the vortex solitons are unstable in this case, al-
V\r'l'th the L.jsur?b( nonllﬂearlty, 'Q \(arlouzszways by rcr;eaqs dOf though the instability of both the HV and ordinary vortex
the quasi-phase-matching technidi#d, 22 (see a detailed  qjiiong is moderate, requiring5 diffraction lengths for its

discussion in Ref[19]). .
) . complete development. The HV soliton eventually trans-
Following Refs.[12,19, we adopt the following model ;¢ into an ordinary stable Z\(ground-state soliton,

governing the SP""“?' evolution Of. two FF waves with theWhile the ordinary vortex splits into a necklace pattern com-
orthogonal polarizations and the single SH wave, coupled t%osed of three ZV solitons

them by the quadratic and cubic nonlinearities. In a normal- As is known, it is difficult to explain peculiarities of the

|z(ejd fzrm, thdeAequatlons for the corresponding local ampli-yin hal instability of vortex solitons in an analytical form
tudesA, , andAg are (sometimes, it may be understood as an instability of the

cd 1, . N 5> 2 5 central hole in a large-area soliton against spontaneous off-
LTSV B ALt AR A"+ §|A2| Ay center shift caused by its attraction to the outer rim of the
soliton [2], but this instability mode is seldom a dominant
- 2\|[AglPA = 0, (1) one. To get, at least, some insight into the instability of the

HV solitons, we will consider its 1D counterpart in the form
of the modulational instabilitfMI) of a CW (continuous-
wave solution withopposite wave numbers two FF com-
ponents. Even this case turns out to be quite cumbersome in
the general case; therefore, our actual analysis focuses on the
P cascading limit(corresponding to a large mismatch between

i . . _ (2
(ZI— + V2 - 2a>A3+A1A2—)\(4|A3|2+ oA 2+ 2/A) DA the FF and SH field$16]), wherein the type-lly ) model _

dz 2 goes over into a system of two cross-phase modulation
-0 (XPM)-coupled NLS equations. We demonstrate that the hid-

den momentum may attenuate the MI, which suggests an

wherez is the propagation distance, the Laplacidiffrac-  explanation for the relative stability of the HV solitons.

0z 2
- 2\|Agl’A; =0, (2)

g 1 1 Y 2
i—+—V2——>A +ALA ——(A 2+ =|A 2>A
( 1 :8 2 173 4 | 2| 3| 1| 2
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An issue of principle interest is a possibility to stabilize !l. DIFFRACTION LENGTH FOR THE LINEAR VORTEX

the vortices by means of th:é_s) nonlinearity. Our main re- In the linear approximation, Eq&l)—(3) decouple. There-
sult is that, while complete stabilization of the HV soliton is fore, to definez;,, which is determined by the linear parts
not plausible(although we were not able to explore the entireof the equations, we take, e.g., the linear version of (Ey.
parameter space of the mogethe X(_:” terms significantly A family of exact solutions can be found for it,

attenuate the azimuthal instability, allowing the soliton to

support itself over the propagation distarcequivalent to A(r,0,2) = A0 _ r > exp(— iBz+iS,0

tens of diffraction lengths. This result puts the HV solitons in (1+ 'Z/ro)(“Sl)

the x'2: x® model in the general class ogarly stablesoli- 1-izlr2 r2

tons, which, strictly speaking, do not exist or are unstable, 1 +22/r4§>’ (4)
0<'o

but may be observed in the experiment, as their instability
develops at unrealistically large values nfwhich would  wherer and ¢ are the polar coordinates in the transverse
definitely exceed the size of available samples. Examples dflane, the intege®, =0 is the vorticity in the fieldd;, while
such objects are tempor5] and spatiotempordP6] soli-  A© andr are arbitrary constants. In terms of quantum me-
tons in y'® media with normal group-velocity dispersion at chanics, this solution can be understood as ac®berent
the SH, which, generally, ought not to exist, but are, in ef-statewith the angular momentur§, in the two-dimensional
fect, relevant physical object@lthough not yet created in free space. _ _
the experiment because their decay would be extremely The intensity distribution corresponding to the solution

slow. 1S
In order to bring the consideration closer to the experi- r r2
mental situation, we do not search for stationary solitons |Ay(r,2)?= A0 1+ 2/r41+s) exp(— 2, 2 2)- (5)
whose stability would be then tested by simulations. Instead, ( o) fo fo
we start with an initial configuration that is expected to belt attains a maximum value at=p, with
sufficiently close to a stationary soliton. This corresponds to T3
the way the experiment is run, starting with an initial beam p=NSi(rg + ZIrg), (6)

that is believed to be sufficiently close to the soliton’s profile.yhich may be naturally identified as the radial size of the
Because the initial configuration is not an exact solution, theyxpanding vortex ring. Them,=Sir, is the initial size of
spatial solitons observed in the direct simulatiéhsth HV  tne ring at the input poinz=0, andZ, may be defined as
solitons and ordinary vorticgsremainingstableagainst azi-  the propagation distance after which the ring’s size becomes
muthal perturbations, perform several cycles of slow oscillayyice as large as it was at the inpw(z=Z,) =2po. From
tions in the radial directioriif the azimuthal perturbations ihis definition and Eq(6), we find
are not seeded, then the number of the radial oscillations is -
indefinitely large, without invoking any instability Zgirr = (V3/S) p.- (7)

Tc_> conqlude the description of the topic, we note that 2DThis expression will be used to gauge various propagation
spatial solitons can be naturally generalized in the form Ofdistances that emerge in simulations of the full nonlinear
three-dimensional (3D) spatiotemporal solitons (STS,

; . . ) system.
which brings the temporal variable into the model. In the An alternative definition of the vortex-ring’s radius may

2..0 . :

XX model of type |, stable spinning STS, with the vor- e paseq, instead of the intensity profi®, on the radial
ticities S =1 and$,=2 in their FF and SH components, wWere igyription of the intensity integrated over the angular vari-
pr_edlcted n Ref_.[_27].. Searc? f% three-dlmen5|onal_ STS able 0, which implies the multiplication of Eq(5) by 2.
with hidden vorticity in th"?X( ':x= model of type Il'is @ The accordingly modified radius of the vortex ring and dif-
challenging issue, which is, however, very difficult in its f5ction length amount to the same expressit@)sand (7)
technical aspects and will not be considered in the preserfiin S, replaced byS;+1/2. Note that the expressiof?)
paper. does not apply to the ZV pulse, witf;=0. However, the

The paper is organized as follows. In Sec. Il we give angjternative definition is also meaningful in this case, yielding
accurate definition of the above-mentioned diffraction Iengthz(&o>:2vr§ pg — \@rﬁ.

Zgitr, USING a@n exact vorticity-carrying solution to the linear difft

2D Schradinger equation, which is based on a radial Gauss- 1. AZIMUTHAL INSTABILITY OF VORTICES
ian. The accurate definition oy is necessary, as the IN THE x® MODEL
stable-propagation distance in the nonlinear models should
be expressed in units &,. Then, in Sec. Il we present
results concerning the azimuthal instability of the vortices in
the ¥'® model, withx =0 in Egs.(1)—(3). This is followed by
brief consideration of the related issue of the modulational , )
instability of the 1D CW states with the “hidden momentum” A(r62= > AP(r,2eP’, j=1,2,3. (8)
in Sec. IV. The main findings, demonstrating the instability p=e

inhibition by theX(_3) terms, are reported in Sec. V. The paperThe substitution of Eq(8) into Egs.(1)—(3) leads to a chain
is concluded by Sec. VI. of coupled equations with the independent variablesdz

Numerical solution of the underlying equatiof)—(3)
was performed by means of the Fourier decomposition in the
angular variable,

+oo

036608-3



LEBLOND, MALOMED, AND MIHALACHE PHYSICAL REVIEW E 71, 036608(2005

15 15 15
Al 0 @ 0 @ 0
FIG. 1. (Color online The
135 0 15 s 0 s s 0 15 s 0 s s 0 15 contour plots ,ShOW a typical ex-
18 18 15 ample of the instability develop-
ment for the soliton with the hid-
A @ den vorticity, i.e., with the initial
2 0 0 0 vorticities (S = +1,5;=0), in the
case of the positive mismatchy,
-15 -15 -15 =4. In this example, the birefrin-
s 0 15 215 0 15 115

gence between the two compo-
nents of the fundamental-
frequency wave is absent, i.65,
=1.

15 1.5 1.5 1.5 1.5

e
w
-

-1.5 ~1.5 ~1.5 -1.5 -1.5
-1.5 0 15 -1.5 0 1.5 -15 0 15 -15 0 1.5 -15 0 15

z=0.5 z =0.72 z=0.94 =117 z=1.39

This chain was truncated by dropping the amplituqx?@ which contains the single amplitude wih=0 in each field
with |p|>6 (i.e., 13 azimuthal modes were taken into ac-component. It is well known that the ZV soliton may easily
cound. The evolution equations for the amplitude’’ were ~ be stable inx® models [16]. The actual mode of the
solved by means of a finite-differences schemerfand z, instability-induced transformation of the HV soliton into the
with the usual three-point approximation f&#AP/ar2, and ~ ZV soliton essentially depends on the sign of the mismatch
the three-point approximation fafA®/ 4z, which provided —Parametem [see Eq(3)]. In the case otr>0, Fig. 1 dem-
for numerical stability of the scheme. We used a constanPnstrates that the soliton keeps its annular structure for a
stepsz=5x 107 for z, and the grid contained 100 points in Wil (the SH component, which had no inner *hole” ini-
ther direction, separated by a stép=0.08. Actually, 35 of gally,l also 'ac;‘quwes a r!ng—_shapr)led fo);nThﬁ rllng.graQUally g
) ’ ! - o ' . evelops inhomogeneity In the azimuthal direction and,
these points were involved in implementation of reflection- . ; ;
less atf)sorbing boundary conditiorrl)srat»oo which was done eventually, collects all the power into a single spot shifted

by adding li b . h . hrelative to the center of the initial ring. Thus, the center of
yt%f ?I,r519 _;near-a sorption terms to the equations over thg,e eyentually established ZV soliton is displaced relative to
se sites.

. the center of the original HV soliton. In the opposite case,
Furthermore, care was also taken to properly regularizg, <o the annular structure disappears faster, as is shown in

the numerical scheme at—0. This allowed us to avoid Fig, 2.
instability due to the factor™ in the radial part of the La- Note that the initial data a=0 in Figs. 1 and 2 have been
placian. chosen close to the final stage of the instability development,
Note that Egs(1)—(3) admit the substitutioli) with only in order to focus on the crucial phase of the destruction of the
three nonzero amplitudeﬁpj), provided that their azimuthal vortices. This explains the strongly perturbed initial profile
indices are locked so thag +p,=ps. In this case, the result- of the vortex ring in these figures. Longer simulations dem-
ing equations for the three amplitudes easily generate a largenstrate that, if the perturbations z£0 are much weaker
number of solitary pulsons, i.e., solutions that are localizedclose to the precision of the numerical schentiee destruc-
in r and feature periodic shape oscillations. These solutiontion of the ring occurs at abow=2.8. Note that the ring’s
are stable within the framework of the three-amplitude reradius, identified as the position of the intensity maximum, is
duction. However, in the case &0, which corresponds to p,=0.32; hence, Eq7) yields Z =0.18(i.e., the destruc-
the purely quadratic nonlinearity, small azimuthal perturbation of the ring initiated by small perturbations occurs within
tions, which include angular harmonics different from the15 or 16 diffraction lengths and the formation of the even-
initial triplet, easily trigger an instability. The azimuthal in- tual ZV spot takes an additional one or Q. In that
stability of the pulsons was also verified in the linear ap-case, the ring, being a pulsqeee abovg performs about
proximation by numerically computing eigenvalues that de-one radial pulsation before it gets destroyed.
termine the instability growth rate for small perturbations. In the same model with =0, the ordinary vortex soliton,
As said above, we are, first of all, interested in the HVwith the vorticitiesS; ,=1 andS;=3, is subject to the usual
soliton, which is based on the expressi@ with the non-  azimuthal instability, which splits it into a set of three stable
zero amplitudesé\(fl),A(z"l), andA(go). In this case, the fastest- ground-state(ZV) solitons. This outcome is illustrated by
growing azimuthal instability involves the angular harmonicsFig. 3. In this case, too, the splitting proceeds very quickly
of the perturbation withp; ,=0 in the FF fields, andy;  because of the strong perturbation included in the initial con-
=+1 in the SH field. After the onset of the instability, higher- figuration. If, instead, the same simulation is run with a small
order angular harmonics are also generated. initial perturbation(with the relative amplitude-1078), then
The development of the azimuthal instability of the HV the corresponding pulson performs about two oscillations in
soliton eventually transforms it into an ordinary ZV soliton, the radial direction, within a distan@e=1, before the insta-
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15 . 15

1.5

-1.5
-1.5

Z1s 0 15
z =05 z =0.72 z =0.83 z =0.94

FIG. 2. (Color onling The same as in Fig. 1, but for a negative mismateh;-3.

bility displayed in Fig. 3 sets in. The radius of this vortex type-ll x® model, into the SH mode, where they mutually
ring is po=0.19, which yield<Z s = 0.06, thus the instabil- cancel.
ity development needs the propagation length6 Z i, .

After the splitting of the vortex has occurred, the three
splinters do not immediately separate; instead, they recom-
bine into a transient pattern of the necklace type. Patterns of
this type have recently been found in models with various As was mentioned above, the simplest 1D analog of the
nonlinearitied 28] (in particular, they are especially robust in two-dimensional HV solitons are multicomponent CW solu-
the case of the samg®: (_) nonlinearity [29]). In the tions with opposite wave numbersg+n two components.
course of still longer simulations, the necklace observed irHowever, the analytical investigation of the Mimodula-
Fig. 3 will again split into three segments, but of different tional instability of such states in the fu}® model of type
sizes, in comparison with the primary on@®t shown herg Il turns out to be extremely cumbersome. Much clearer re-
The recombination and secondary splitting lead to loweringsults can be obtained in a simplified model, which corre-
of the pattern’s symmetry, from the threefold one in Fig. 3 tosponds to the cascading linfthe one with large mismatgh

IV. ANALYSIS OF MODULATIONAL INSTABILITY
IN 1D CW STATES WITH “HIDDEN MOMENTUM”

a twofold symmetry at a later stage of the evolution. i.e., two coupled NLS equations,
The comparison to the instability-induced splitting of the )
vortex soliton suggests a qualitative understanding of the fact J 17 2 2
_ , _ ! i—+=— |A + (JA)?+ 0]ADA, =0, (9)
that the HV soliton transforms itself into a usual ZV soliton. gz 20x?

Indeed, although each FF component may have a trend to
split into three segments, the two sets of the splinteesk- 9 1
laces would have to rotate impposite directionswhich is I—+3

oo . dz 24
difficult for them to do. In fact, the opposite angular mo-
menta originally lent to the two FF components can be transef. Egs. (1) and (2). Here the positive coefficient is the
ferred, because of the direct parametric interaction in theXPM/self-phase modulation (SPNMjtio, which we keep as a

+(|Ag> + alA DA =0, (10
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1 1

A 0.5
1 o 0
05 0.5
4 0 1L 0 T 0 1
z =0 z=0.11 z=0.17

FIG. 3. (Color onling A typi-

- cal example of the splitting of the
a ordinary vortex, withS; ,=1 and
f $:=2, in the model without the

cubic nonlinearity, into a set of

three fragments, that temporarily
recombine into a necklace. In this
case,a=-3 andB=1. The evolu-

-1 0 1 -1 0 1 =1 0 1 tion of only one FF component is
shown here, the other fields show-
z=0.22 z =0.28 z =0.33 ing a similar behavior.

-1 0 1 -1 0 1 -1 0 1
z =0.39 z =0.44 z =05
free paramete(usual physically relevant values ase=2/3  resulting dispersion relation for the instability growth rate
and 2. The solution with “hidden momentum” is v is
S
A Az.X) = Agexplikztigx), AZ=(k+1g/(1+0) V= i) = PP A~ o = T+ VAG(0PAG — 40P) + PP |,
(1) (12)

which shows the effect of the hidden momentgron the M
of the CW solution.

First, the expansion of Eq12) for p?—0 demonstrates
that the addition ofg? leads to adecreaseof the largest
instability growth rate for long-wave perturbations,

(the propagation constaktis taken equal in the two compo-
nents to provide for the symmetric solutjoin this connec-
tion, it is relevant to mention that two-component solitons of
the HV type, with spins $in the twoXPM-coupled modes,
can also be constructed in the 2D version of the sygi@m
and(10) augmented by self-defocusing quintic terms to pro- V2 =~ pA AL - g? + VAY(0PAZ - 4g?)]. (13)
vide for the global stability of solitons in the 2D cals22]. p A4 _ Al -4q __

For the study of the MI of the solutior@1), we proceed It follows from this expression that the instability at smal
as usual, representing the fields in terms of the amplitude ari§ completely eliminated if” belongs to the interval
phase,A; ,=ay Az, X)exdiedy o(z,X)], and linearizing equa- _ 2 2 202
tions for the perturbations af; , and ¢; ,. The eigenmodes max{o =1, 1A < o” < (012)A, (14)
of the perturbations are subsequently sought for in the formwhich is actually possible only fos->2. Note also that, in
~exp(yz+ipx) with an arbitrary real wave numbgr. The  the case of?> (cAy/2)?, the expressionil 2) and(13) yield
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FIG. 4. (Color online The
contour plots display the evolution
of the leading azimuthal compo-
nents GrAEﬁ)(r,z) (j=1,2,3 of
the three amplitudesp;, which
form the hidden-vorticity pulson,
with §; ,=+1 and $=0, in the
full x@: x'® model(the multiplier
\ris added to illustrate the distri-
bution of the integral intensities of
the fields, which arer|A; 5 4?).
The vanishing of these compo-
nents after=6 cycles(atz=13.95
corresponds to the destruction of
the soliton by the azimuthal insta-
bility. In this case, the parameters
are B=1, =5, and A=0.0045.
The white contours on the left il-
lustrate the diffraction of the input
in the absence of nonlinearity.

complex eigenvalues, corresponding to an oscillatory Mlsafely exist over the propagation distance amounting to sev-

which is not possible wheq=0.
Another consequence of EqL2) is that the value that
limits the instability region is

Puoi = AP + (1 +0)AZ] (15)

[so that y2(p)<0 for p?>pZ,.. Moreover, if g?
> (0Ay/2)?, there aretwo distinct instability intervalsthe
one

0.< p? < Aj(4d” - *AY /Y, (16)
in which the instability growth rate is complex, and
4o - (0~ DAG] < p* < 4[g*+ (L +0)AT],  (17)
wherein it is real. In the region
A4G” - PAYIG? < pP < 4[” - (0 - DAF],  (18)

between the interval€l6) and(17), there is no instability.

Finally, the addition of the hidden momentum can also

decrease the maximum valug,,, of the instability growth
rate. For instance, in the case @F2 andg?=A3, we find
Ymax=(V3/2)3A,~0.866% 3A, (it is attained atp=3A,),

eral dozen of the diffraction lengths, which will render them
completely stable objects in any feasible experinieht for
instance, experiments in which stable quasi-2D spatiotempo-
ral solitons[30] and optical vortices of the dark-soliton type
[31] were found inx® media—in those cases, the experi-
mentally available propagation distance did not exceed a few
diffraction lengths.

As said above, we did not try to start the stability tests by
finding numerically exact stationary soliton solutions; in-
stead, the initial configurations were taken in a “reasonable”
form, with the aim to keep the simulations closer to the ex-
perimental situation in this respect too. As a result, we have
observed that, if the initial configuration was limited to a
superpositior(8) with exactly three components, which cor-
respond either to the HV soliton, with ,=+1 andS$;=0, or
the vortex withS, ,=1 andS;=2, the “reasonable” input eas-
ily self-traps into a pulson which remains stable indefinitely
long, if it is not deliberately perturbed.

A. Hidden-vorticity soliton (S; ,=+1,S3=0)
The explicit addition of perturbations in the form of a

while in the same case, but wiil)=0, a somewhat larger random mixture of extra angular harmonics gives rise to a

value, Ymax=3Ao, is attained ap=+6A,.

V. STABILIZATION OF VORTICES IN THE FULL MODEL

Many runs of simulations of the full systefi)—(3) with

slowly developing instability of the solitons. As well as in
the previous section, we will first consider the HV soliton.
Before being destroyed by the azimuthal instability triggered
by added perturbations, it keeps to pulsate at a fixed fre-
quency, as shown in Fig. 4. A cardinal difference from the

A>0 have demonstrated that the HV solitons, as well as thenodel without they'® terms (see aboveis that now the
ordinary compound vortices, cannot be completely stabilizegoliton is robust enough to perform six or seven slow pulsa-

under what may be regarded as realistic conditiongar-

tions, whereas in the previous model, it would be destroyed

ticular, we did not test the stability of the vortices of an before completing even two cycles of the intrinsic vibrations.
extremely large size, where complete stabilization might be Recall that, in the model with =0, the azimuthal insta-
expected, as suggested by the results obtained in allied mo#ility transformed the HV soliton into a single ZV soliton
els [2-4, 12 14) However, it is quite possible to find cases (see Fig. 1 In the present case, the outcome of the develop-
when thex_ nonlinearity makes both the HV solitons and ment of the slow instability is different; as shown in Fig. 5,

ordinary vortices practically stable, i.e.,

the solitons maythe HV soliton eventually splits into a set of two ZV ones. A
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FIG. 5. (Color online The
splitting of the hidden-vorticity
soliton into a set of two zero-
vorticity solitons caused by the
weak azimuthal instability in the
same case as in Fig. 4. The three
rows of the contour plots show the
evolution of intensities of the soli-
ton’s fieldsA,, A,, and A; at the
critical stage of the splitting. Az
<13, the initial soliton remains
completely stabléfeaturing long-
period persistent radial pulsa-
tions).

1
A1 0
=

1

2 0
-1

A

-1 0 1 -1 0 1
-1 0 1

-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
z =13.1125 z =13.4875 z =13.8625 z =14.2375 z =14.6125 z =14.9875

noteworthy conclusion that follows from Fig. 4 is that the muthal index of the most unstable perturbation
HV soliton, in the form of the ring with the radius-0.5, [2,3,12,14,17. The perturbations witp=+1 andp=+3 are
which corresponds t&q =0.43 (about twice the values also formally growing, but they remain insignificant, as their
obtained in the case af=0, cf. Figs. 1 and  survives over amplitudes stay four orders of magnitude smaller than those
a propagation distance of about 2@, whereas without the  of the dominant mode witlp=+2. It appears that, at a late
X(_g) terms, the soliton was destroyed after passing the disstage of the instability development, when the linearization is
tancez=15 Z . Note that the radial pulsations of the HV no longer valid, the perturbations with- +3 andp=+1 are
soliton (displayed in Fig. #have a very large period, which nonlinearly suppressed by the dominant mode.
decreases during the propagation frefd.5 to = 4.5 Z i, . Higher-order perturbation harmonics may also play a sig-
Details concerning the instability-driven growth of the nificant role. In particular, Fig. 6 shows that the modes with
amplitudes of different angular harmonics in the perturbatiorp=+4 are unstable in the linear approximatidas their
around the SH componefif;) of the HV soliton are col- growth starts at an early stagalthough their linear-growth
lected in Fig. 6. The first feature, obvious in the figure, is thatrate is obviously smaller than that of the main mode, with
the dominant instability is accounted for by a conjugate paip=+2. However, on the contrary to the above-mentioned
of the harmonics witlp=+2. With regard to the fact that the perturbations wittp=+1 andp=+3, whose growth is non-
SH component of the unperturbed HV soliton has zero vordinearly inhibited by the dominant mode, the growth of the
ticity, this precisely complies with the observation that theharmonics withp=+4 is nonlinearlyenhancedstarting from
HV soliton is eventually split by the instability into two ZV z~11. This observation can be understood, asxtenon-
solitons(as seen in Fig. 5 Note that, in other models, too, linearity directly generatep= =4 harmonics from the main
the number of the splinters usually coincides with the azi-p=+2 ones.

(p)
AT o

=2

—4

-6 FIG. 6. (Color online The
growth of the amplitude$Al| of

-8 the angular perturbations in the

~10 second-harmonic fielfidefined as
in Eq. (8)] with z is shown on the

12 logarithmic scale, for the same
case as in Figs. 4 and 5. The val-

-14 ues of the azimuthal indep are
indicated near the curves.

-16

-18

=20

1 1 1
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FIG. 7. (Color online The
contour plots display the evolution
of the leading azimuthal compo-
nents \frAE%)(r,z) (j=1,2,3 of
the three amplitudesd;, which
form the vortex pulson, wittg, ,
=1 andS;=2, in the full Y2 ,®
model (the multiplier \r is added
to illustrate the distribution of the
integral intensities of the fields,
which are 2rr|A; » 4%). The soli-
ton is expected to be destroyed by
the azimuthal instability in the
course of the further propagation,
at abouz=22. In this case, the pa-
rameters areg3=1, a=-3, and\
=0.0054. The white contours on
the left illustrate the diffraction of
the input in the absence of
nonlinearity.

Finally, the modes witlp=+5 and %6 are linearly stable, A simpler approach igas it was done above for the HV
as they do not grow up ta=9, when they suddenly get a solitons to look for a possibility for self-trapping of practi-
boost. It is an obviously nonlinear effect; in particular, thecally stable pulsons from a generic input. For instance,
p=+6 harmonics are directly generated by th€ terms choosingh=0.0054 and3=1, «=-3, we observed that the
from the main perturbation mode wifh=+2. vortex remained apparently stable over many diffraction

lengths, featuring persistent pulsations in the radial direction,
as shown in Fig. 7. In this case, the radius of the vortex ring
B. Ordinary Compound vortex (51’2:1153:2) is pO:O.S, WhICbh yieI((jjSZdiﬁrzo.43 and the quasistable
. . . propagation is observed up t&12.5~ 30 Zg,. An extrapo-

Results og}aw(\gd in related models, with the [23,4,17 |45 of the growth of the perturbations predicts that the
and_ type-Ix'<: x- [12,14 nonlinearities, suggest that the splitting of the ring should occur as=22~ 50 Z;.
ordinary vortices, such as the one wiF2S, ,=2, may be In fact, the ordinary vortex appears to be even more stable
completely stabilized, provided that the size of the vortexthan the HV soliton. Accurate analysis of the numerical data
soliton is very large. In this work, we did not aim to find makes it possible to compute the growth ratefor the am-
completely stable stationary vortices in this way, as the corplitudes of different angular harmonics in the perturbation,
responding huge values of the power and diffraction lengttassuming that thpth one grows as expz+ip6). The result

would be physically unrealistic. is presented in Fig. 8. As is seen, the most unstable pertur-
G T T T T T T
1
Al
o | _ |
0 1 | | 1 |
-6 -4 -2 0 2 4 6 P
G : : : : : : FIG. 8. (Color onling The in-
1 : ’ : stability growth rates for different
A2 angular  harmonics, ~exploz
05 ) ) ) ) ) +ip#), in the three components,
Aq, and A3, of the perturbation
o R | _ I around the quasistable vortex with
, = ' : . °p S, ,=1, $;=2. The parameters are
-6 -4 -2 0 2 4 6 e
A=0.0054,8=1, anda=-3.
O T T T T T T
1 b
A3
0.5F : :
VUi | I I | I 1
-6 -4 -2 0 2 4 67
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A1 0
-1
-1 0 1
1
A FIG. 9. (Color online The in-
2 0 stability of the ordinary vortex
. (S12=1,5=2) in the case of\
B =0.005 andB=1, a=-3.
-1 0 1
1
A3 0
-1
-1 0 1
z =125 z =1.625 z =1.875 z =2.125
bation modes correspond ppe=(4,-2) andpsy=(5,-1) in VI. CONCLUSION

the FF and SH fields, respectively. Subtracting the vorticities |, this work we have considered basic types of 2D vortex
fSl,Z:l andsé=2 of the un;t)_ertlurbed FF ar}ddSHtﬁotmpclmt‘?mssolitons in the three-wave model combining the self-
rom Per aNd Psyy, r€Spectively, we conclude that retalive yoc,¢\ising cubic interaction and quadratic interaction of type
azimuthal indices of the intrinsic perturbation are +3, sug-

gesting that the vortex will eventually split into three zero- lI'a\j—ehsear!?jttaersir'1m|/gl::iorgvg?h;rurgdam?%gtge_?ﬁggdigm
vorticity solitons, as it has been observed for other values of 9 oftit] ’ Y

. - - . 2) .
the parameteré&see Fig. 9. can be implemented in a birefringegt? material on the

The vortex can also split into a set of four ZV solitons, asPaSiS of the quasi-phase-matching technique. The three-wave
shown in Fig. 10. Note that, as well as in Figs. 1-3, initial Structure of the model makes it possible to construct a spe-
configurations az=0 in Figs. 9 and 10 have been chosenCific type of 2D solitons, namely, the ones whidden vor-
close to the final stage of the instability development, i.e.licity (HV), which carry vorticities +1 in the FF components,
they contain large perturbations. Starting with initial configu-and zero in the SH. In parallel, we have also studied the
rations that contain small perturbations, we observed that theésual compound vortex with the vorticiti€®=2S, ,=2 in
instability always developed slower than in the model with-the three fields.
out the cubic terms. In this case, the distance at which the In the absence of the self-defocusing cubic nonlinearity,
splitting occurs is found to be between 15 and 50 diffractionall the vortices are subject to the azimuthal instability within
lengths. the propagation distance 15 Zy; (to accurately define the

FIG. 10. (Color online The
same as in Fig. 9, but with\
=0.0057. In this case, the vortex
splits into four fragments.

-1 0 1
-1 0 1

Q

0
=2.125 7 =25 - =2.875 2
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diffraction lengthZg,, we have found an exact solution to the HV soliton splits into two ZV solitons, while the vortex
the 2D linear Schrédinger equation that describes a spreaevith S;=2S; ,=2 splits into three or four ZV solitons.
ing localized vortex, which has the meaning of the 2D co- The most essential prediction for the experiment, follow-
herent state with angular momentum in quantum mechganicsing from the present results, is that observation of an effec-
This instability transforms the HV soliton into a usual stabletjvely stable 2D soliton with the hidden vorticity is quite
2D zero-vorticity(ZV) pulse(alias, the ground-state soliton  possible, in principle, even without the addition of the stabi-
while the ordinary vortex splits into three ZV solitofthey |izing cubic nonlinearity. In the experiment, the radius of the
form a transient necklace pattern, which features its OWR,gtex-carrying beam and the FF wavelength are expected to
intrinsic dynamics To _better ur_lderst_and thls case, we hav e, respectivelyt ~ 20 um and\ge~ 1 um, with the respec-
a_Iso developed qnalytl_cal co_n.S|derat|on of its 1D counterparty, o jitfraction length being, in physical unitsZg
viz., the modulgmonal instability of a CW state with th_ml- ~(2w/)\)v’§r2:0.5 cm; hence, a sample admitting the
den momentupnin the form of opposite wave numbers in two . .

propagation length up te~20 cm will be necessary.
coupled components.

In the full model, which includes the cubic terms, both the
HV solitons and ordinary compound vortices may be
strongly stabilized, persisting over the propagation distance
(which can be as large as 30 or even 50 diffraction lengths  The work of one of the author®.A.M.) was supported,
Therefore, they are completely stable physical objects, inn part, by Grant No. 8006/03 from the Israel Science Foun-
terms of possible experiments. After very long propagationdation.
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